
Israel

PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Transverse localization of directed waves in random media

Gregory Samelsohn* and Reuven Mazar†

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105,
~Received 18 November 1997!

In this work we consider the propagation of directed waves in random media with a finite correlation scale
in the longitudinal direction. The problem is described by a standard parabolic equation of the same type as the
nonstationary Schro¨dinger equation describing the motion of a quantum particle in a dynamically varying
random potential. Applying the path integral approach, we study perturbatively the mean intensity distribution
of a pointlike source located in a random medium with inhomogeneities stretched along the propagation
direction. We show that in this case the intensity is enhanced on the axis and reduced on the edges of the beam,
which can be related to the phenomenon of transverse localization. The dependence of the transverse local-
ization length on the geometry of the problem in different propagation regimes is examined. Though the
language of classical waves is used, the results are valid for the quantum case as well.
@S1063-651X~98!02307-1#

PACS number~s!: 03.40.Kf, 05.40.1j, 42.25.2p
ha
sic
-
f t

a
p

on
g
-

ud

io
s-

g
tie

th
s
d
e
c

-

an-

po-
tive
s

s-
rm

id-
s,
e

y-
-
n-
a

n-
the

g

dy

r-

d
ar-
m

In
ing

a
bing
I. INTRODUCTION

The propagation of classical waves in random media
been the subject of investigation in various areas of phy
for several decades@1–3#. Among different propagation re
gimes there is a special one when the inhomogeneities o
medium are sufficiently weak, smooth, and large scale
compared to the radiation wavelength. In this case the pro
gation process is localized mainly in the forward directi
~the so-called small-angle scattering! and the backscatterin
can be fully neglected@1,2#. The propagation of such di
rected waves can be described to a good approximation
the standard parabolic equation for the complex amplit
u(r ,z),

2ik]zu1¹ r
2u1k2«̃~r ,z!u~r ,z!50, ~1.1!

wherez is the range coordinate along the main propagat
direction andr is the two-dimensional vector in the tran
verse plane~cross-range coordinate!. The conditions of ap-
plicability of this equation in the case of sufficiently stron
disorder can be satisfied for anisotropic inhomogenei
when the scattering potential varies very slowly in thez di-
rection. The typical examples are the irregularities in
ionosphere usually stretched along the magnetic field line
horizontally elongated internal waves in the ocean. In ad
tion, highly anisotropic structures, such as fiber-reinforc
composites, have become very important in modern te
nologies.

The parabolic equation~1.1! coincides with the nonsta
tionary Schro¨dinger equation

i\] tc1~\2/2m!¹2c2V~r ,t !c~r ,t !50, ~1.2!

*Electronic address: gregory@newton.bgu.ac.il
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which describes the motion of a quantum particle in a r
dom time-dependent potentialV(r ,t). The analog of time for
classical waves is the range coordinate and the random
tential corresponds to the spatial fluctuations of the refrac
index. This correspondence is defined by the substitution

z↔t, k↔m/\, «̃~r ,t!↔~22/m!V~r ,t !. ~1.3!

A special property of the parabolic equation, in either cla
sical or quantum wave form, is the unitarity, i.e., the no
*dr uc(r ,t)u2 is prescribed at all times.

It should be mentioned that this problem can be cons
ered in a wider framework including other formulation
which are similar in form. In particular, the imaginary-tim
version of Eq.~1.2! describes the problem of directed pol
mers in a random medium@4#. When, in addition, the poten
tial V(r ,t) is also imaginary, the model is relevant to qua
tum tunneling of a strongly localized electron under
random barrier@5#.

The original real time model, in both classical and qua
tum mechanical formulations, was used mainly to study
scaling behavior of the wave motion at larget. If the poten-
tial varies very quickly in time, then the problem of findin
the statistical characteristics of the wave amplitudec(r ,t)
can be solved by applying thed-correlation ~Markov! ap-
proximation @2#. This method has been employed to stu
the wandering of laser beams in a turbulent atmosphere@6#
and diffusion of a quantum particle in dynamically diso
dered systems for both lattice@7,8# and continuum@9# mod-
els. In recent works@10–14# the main efforts were focuse
on the numerical investigation of the spatial and kinetic ch
acteristics of a quantum particle in a rapidly varying rando
potential.

Another limiting case is the time-independent potential.
this case the constructive interference of multiple-scatter
waves leads to the wave localization phenomenon@3#, when
the wave is trapped within a finite region of space as in
random resonator. Since the parabolic equation, descri
1094 © 1998 The American Physical Society
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the propagation of classical waves, coincides with the Sch¨-
dinger equation in two spatial dimensions, we may exp
the transition to strong localization for any degree of dis
der. This has been demonstrated by using direct nume
calculations in the work of De Raedt, Lagendijk, and
Vries @15#, where this effect was called transverse localiz
tion. It has been shown that the wave beam propagatin
the z direction and having some initial width expands un
the beam diameter approaches the transverse localiz
length. From then on, the beam does not spread in the tr
verse direction beyond this localization length and pro
gates without further expansion as in a random wavegui

A qualitative analysis of the motion of a particle in th
intermediate case of finite correlation time has been p
formed by Bouchaud@16#. It was found that for a correlation
time larger than the time needed for the particle to achiev
localization radius, the diffusion of the particle is defin
entirely by the time evolution of the scattering potential a
by the localization radius in a time-independent potent
Obviously, for zero correlation time the localization is abse
because the particle has no time to achieve some static
tion.

An attempt to analytically obtain the corrections to t
Markov approximation has been made by Klyatskin and
tarskii @17# for the mean field and second-order coheren
function and later by Zavorotnyi@18# for the higher statisti-
cal moments of the field. In particular, in the latter work
path integral representation for the field was used and
Markov approximation served as a leading term of a per
bative expansion. Evaluation of the next term allowed
applicability limits of the Markov approximation to be con
sidered, but, as in@17#, only for the incident plane wave
However, this model leads to the translational invariance
the results in the transverse plane and, consequently, ca
demonstrate any localization behavior. Some related res
can be found also in the review paper by Dashen@19#. The
mean field~averaged one-particle Green’s function! of a di-
rected wave propagating in a medium with a tim
independent potential was studied in@20#.

In order to consider the transverse localization of direc
waves in a random medium with finite correlation in t
propagation direction~finite time correlation!, we perform an
asymptotic analysis of the mean intensity distribution o
pointlike source. The procedure used is similar to that de
oped in @19# and has been employed in our recent pap
@21,22#, devoted to the analysis of propagation and locali
tion of classical waves in multiple-scattering random med
without paraxial restriction. As a leading term of the corr
sponding expansion, we use the straight-line approxima
to the path integral solution and estimate the correction p
turbatively. Evaluating the second statistical moment of
field ~average two-particle Green’s function!, we have found
that the normalized mean intensity in non-Markovian me
differs from unity: The mean intensity is enhanced on
axis of the wave beam and is reduced on its edges, wh
obviously, can be treated as a direct manifestation of
localization phenomenon.

The outline of this work is as follows. First, in Sec. II, w
introduce the parabolic equation and present its solution
path integral form. The phenomenon of stochastic locali
tion is related to the behavior of the second-order cohere
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function that is defined in Sec. III. Representing the u
known solution as a perturbative sum of a leading term p
a correction, we obtain an asymptotic expression for the n
malized coherence function. The calculation procedure is
scribed in Appendix. Further, in Sec. IV we analyze t
wave correction to the mean intensity of a point source.
exemplify the results we evaluate the correction for a Gau
ian correlation function. Finally, Sec. V contains a summa
and some principal concluding remarks.

II. PATH INTEGRAL FORMULATION

We start with the Helmholtz equation

¹2G1k2@11 «̃~R!#G~RuR0!52d~R2R0!, ~2.1!

which describes the propagation of a scalar time-harmo
wave in a spatially inhomogeneous medium. The vectoR
denotes the position,k is the wave number in a homogeneo
medium, and«(R)511 «̃(R) is the permittivity distribu-
tion, in which «̃(R) is the random perturbation. Assumin
that the propagation process takes place mainly in the
ward direction, we denote the reduced wave funct
g(r ,zur0 ,z0) by extracting the main phase term

G~RuR0!5exp@ ik~z2z0!#g~r ,zur0 ,z0!. ~2.2!

Neglecting the second range derivative, we transfer from
~2.1! to the standard parabolic equation

2ik]zg1¹ r
2g1k2«̃~r ,z!g~r ,zur0 ,z0!50, ~2.3a!

with the initial condition

g~r ,z0ur0 ,z0!5d~r2r0!. ~2.3b!

It is worth noting that this equation is also valid for electr
magnetic waves because the polarization does not cha
essentially in the process of small-angle scattering.

Using the analogy with the Schro¨dinger equation, we
present the solution of Eq.~2.3! in a Feynman path integra
form @23#

g~r ,zur0 ,z0!5E
r ~z0!5r0

r ~z!5r
Dr ~z!

3expF i
k

2 E
z0

z

dz$@ ṙ ~z!#21 «̃„r ~z!,z…%G ,
~2.4!

where the integration*Dr (z) in the continuum of possible
trajectories is interpreted as a sum of contributions of a
trary paths over which the wave propagates from pointr0 in
the planez0 to point r in the planez. Next, we present the
virtual trajectory as a sum

r ~z!5 r̄ ~z!1q~z!, ~2.5!

where the first term

r̄ ~z!5
z2z

z2z0
r01

z2z0

z2z0
r ~2.6!
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is a straight line connecting the end pointsr0 andr , andq(z)
is a two-dimensional curved path that is equal to zero az
5z0 andz. As a result, the path integral can be presented
a product of two factors

g~r ,zur0 ,z0!5g0~r ,zur0 ,z0!g«~r ,zur0 ,z0!, ~2.7!

whereg0 is the free-space Green’s function

g0~r ,zur0 ,z0!5
k

2p i ~z2z0!
expF ik~r2r0!2

2~z2z0! G ~2.8!

and the inhomogeneous factorg« is given by the expression

g«~r ,zur0 ,z0!5 R Dq~z!

3expH i
k

2 E
z0

z

dz«̃„r̄ ~z!1q~z!,z…J ,

~2.9!

in which the circular integral is used to underline the fact t
all the related trajectories are closed in the transverse pl

III. COHERENCE FUNCTION

The effects related to localization are described by
second-order coherence function~or, in quantum mechanica
language, by the two-particle Green’s function!. We define
the normalized coherence function

g2~r2I ,r02I ;L !5^g«~r1 ,z01Lur01,z0!g«* ~r2 ,z01Lur02,z0!&,

~3.1!

which is equal to unity in a homogeneous medium. Herea
the angular brackets denote an ensemble average anI
51,2,...,n. To simplify the averaging procedure, we assu
that the random perturbations«̃(R) are Gaussian. Then th
coherence function can be expressed through the correla
~structure! function of the permittivity fluctuations, as is pre
sented in the Appendix, Eqs.~A1!–~A6!. Next we extract a
straight-line approximationḡ2(r2I ,r02I ;L) @Eq. ~A8!# and ex-
pand the coherence function in a series

g2~r2I ,r02I ;L !5ḡ2~r2I ,r02I ;L !$11x1¯%, ~3.2!

where the first correctionx is given by

x5
k2

2 E
0

L

dz1E
0

L

dz2E d2s F«~s,z12z2!

3$ 1
2 exp~ iv1•s!@12exp~2 ihs2!#

1 1
2 exp~ iv2•s!@12exp~ ihs2!#

2exp~ i ṽ•s!@12exp~2 i h̃s2!#%. ~3.3!

Here we have denoted the vectorsvj and ṽ as

vj5 r̄ j~z1!2 r̄ j~z2!, ṽ5 r̄1~z1!2 r̄2~z2! ~3.4!

and we have introduced also a two-dimensional spectral d
sity F«(s,z) of the random structure in the transverse pla
see Eq.~A12!. The coefficientsh and h̃ are given by
s

t
e.

e

r

e

ion

n-
;

h5 1
2 ~L/k!~z/L !~12z/L ! ~3.5a!

and

h̃5 1
2 ~L/k!~z/L !~122z8/L !, ~3.5b!

wherez8 and z are the sum and difference longitudinal c
ordinates

z85 1
2 ~z11z2!, z5z12z2 . ~3.6!

Performing spectral expansion with respect to thez coordi-
nate,

F«~s,z!5E dr exp~ izr!F«~s,r!, ~3.7!

we can present the result in terms of the three-dimensio
spectrum F«(s,r). In d-correlated ~Markovian! media
F«(s,r)[F«(s,0) and the two spectra used above are
lated by

F«~s,z!52pd~z!F«~s,0!. ~3.8!

In this case the correction vanishes and the leading t
coincides exactly with the solution of a small-angle appro
mation of the radiative transfer equation@2#. Therefore, the
value of x describes purely wave nature properties of t
propagation process and can be treated as a wave~quantum!
correction.

IV. MEAN INTENSITY

We will exemplify the nontrivial properties of the solutio
~3.2! in non-Markovian media by analyzing the normalize
mean intensityi(r ,L) of a pointlike source in a statistically
homogeneous random medium. We can consider the so
of the directed beam as a point source when its spatial ex
is much smaller than the transverse correlation scale, e.g.
size of the first Fresnel zonel F5AL/k in the regime of weak
intensity fluctuations. In this case the value ofi(r ,L) can be
obtained fromg2(r2I,r02I;L) by setting r0 j50 and r j5r ,
which leads to

i~r ,L !511x1¯ , ~4.1!

and the correctionx reduces to the form

x5
k2

2 E
0

L

dz1E
0

L

dz2E d2s F«~s,z12z2!

3cos@r•s~z12z2!/L#@cos~ h̃s2!2cos~hs2!#.

~4.2!

Performing integration over the sum coordinatez8 and as-
suming that the medium is statistically isotropic in the tran
verse plane, we get

x5k2E
0

L

dz~L2z!E
0

`

ds s F«~s,z!J0~rsz/L !

3@~hs2!21 sin~hs2!2cos~hs2!#, ~4.3!
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whereJ0(z) is the Bessel function. In some practically im
portant situations this formula can be essentially simplifi
If all spatial frequencies in the spectrumF«(s,z) satisfy the
conditionslF!1 ~geometric optics approximation!, then we
can expand the trigonometric functions in a series and k
only the two first terms, which leads to

x5
p

6
L3E

0

L

dz~z/L !2~12z/L !3

3E
0

`

ds s5J0~rsz/L !F«~s,z!. ~4.4!

In addition, for the longitudinal scale of the mediuml z!L
we extend the upper limit in the integral overz to infinity
and approximate the correction by

x5
p

6
LE

0

`

dz z2E
0

`

ds s5J0~rsz/L !F«~s,z!. ~4.5!

As an example we will estimate the correction for t
anisotropic Gaussian correlation function of the form

B«~r ,z!5s«
2 exp~2r 2/ l r

22z2/ l z
2!. ~4.6!

This function corresponds to the spectrum

F«~s,z!5~4p!21s«
2l r

2 exp~2 l r
2s2/42z2/ l z

2!. ~4.7!

Then the integral in Eq.~4.5! is calculated exactly and w
have

x5~2Ap/3!s«
2~ l z

3/ l r
4!L. ~4.8!

As is natural, the correction increases with the longitudi
scalel z . However, for isotropic spectruml r5 l z and the cor-
rection behaves asx;s«

2L/ l z , i.e., it is greater for smalle
inhomogeneities.

Performing integration in Eq.~4.4! for the same Gaussia
spectrum leads to

x5 8
3 s«

2~L/ l r !
4E

0

1

dt t2~12t !3

3exp~2l 2t2! 1F1„3,1;2~r / l r !
2t2

…, ~4.9!

wherel 5L/ l z is the normalized distance and1F1(a,b;z) is
the hypergeometric function. The results of calculations
the normalized value ofx as a function of the normalize
displacement of the observation point from the beam a
r / l r for several values ofl are shown in Fig. 1. In forward
direction the correction is positive, and therefore the int
sity is enhanced, while it is reduced in other directions. T
point where the correction passes through zero can serv
an estimate of the ‘‘transverse localization length.’’ Th
value increases with the decrease of the time correlationl z ,
in accordance with the qualitative picture presented in@16#.

In the general case, instead of Eq.~4.3! we use an equiva
lent representation
.

p

l

f

is

-
e
as

x5k2E
0

L

dz~L2z!E
0

1

djE
0

`

ds s F«~s,z!J0~rsz/L !

3@cos~jhs2!2cos~hs2!#, ~4.10!

which seems to be more suitable for numerical calculatio
For the Gaussian spectrum~4.7! the correction depends o
the dimensionless parameterL5 l F / l r and is given by

x5s«
2k2L2E

0

1

dtE
0

1

dj~12t !exp~2l 2t2!@ f ~ t,j!2 f ~ t,1!#,

~4.11!

where

f ~ t,j!5~11a2!21 exp~2b!@cos~ab!1a sin~ab!#
~4.12!

and

a52L2t~12t !j, b5~11a2!21~r / l r !
2t2. ~4.13!

If L!1 we reproduce the results of geometric optics a
proximation. Moreover, as we can show by direct numeri
calculations, this result is also practically exact untilL51.
For L@1 the characteristic scale of the transverse inten
distribution is of the order ofl F . The normalized value ofx
for l 50 ~time-independent potential! as a function ofr / l F
for various values ofL is shown in Fig. 2. The localization
length increases withL, i.e., it is larger for smaller scales o
inhomogeneities in the transverse plane. The same de
dence for a fixed value ofL55 and various values ofl is
presented in Fig. 3. The variations of the potential in tim
allow the particle to move a distance of the order ofl r in
each time intervall z and consequently the localization leng
increases. Finally, in Fig. 4 we present the dependencex
for a finite value ofl normalized to the value ofx for the
time-independent potential (l 50). We see that for largerL
the correction is less sensitive to the ‘‘temporal’’ variatio
of the potential.

FIG. 1. Normalized wave correction in the geometric optics
gime as a function of the normalized transverse coordinater / l r for
l 52, 4, and 8. The dashed line corresponds to the tim
independent potential (l 50).
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It is worth noting that, in contrast to the visual impressi
from the data presented in Figs. 1–3, the negative tail, w
being very small, is able to compensate for the intensity
hancement in the forward direction. In fact, it is easy
verify that

E d2r x~r !50 ~4.14!

and the condition of energy conservation~unitarity! is
satisfied.

V. SUMMARY

In this work we have implemented the path integral a
proach for the analysis of transverse localization of direc
waves. To this end we have studied the wave correctio
the mean intensity of a pointlike source located in a medi
with finite correlation along the propagation direction. It h

FIG. 2. Normalized wave correction as a function of the n
malized transverse coordinater / l F for the time-independent poten
tial ( l 50) andL52, 4, and 8.

FIG. 3. Normalized wave correction as a function of the n
malized transverse coordinater / l F for L55 andl 55, 10, and 20.
The dashed line corresponds to the time-independent potential

50).
le
-

-
d
to

been shown that in such a medium there is a redistributio
the intensity pattern as compared to that in a Markov
medium. In this case the intensity is enhanced on the a
and reduced on the edges of the beam, which can be re
to the phenomenon of transverse localization. We h
shown, in particular, that the localization length increas
with the parameterL, i.e., is larger for smaller scales o
inhomogeneities in the transverse plane. For largerL the
correction is also less sensitive to the temporal variations
the potential.

On the one hand, the smallness of the correction obtain
i.e., the conditionx!1, can serve as a good test for th
applicability of the Markov approximation. For the opposi
casex@1 we may expect a strong transverse localizat
that has not only a statistical, but also a dynamic nature,
the localization will be observed for almost all realizations
the random medium except for the realizations with meas
zero. It is this effect that has been observed in@15# for a
single realization of the scattering potential. Such an an
tropic random medium can channel the radiation even in
absence of a deterministic background and can be treate
a random waveguide, a counterpart of a random cavity~or
random resonator! for nondirected waves scattered in isotr
pic media@3,22#. Our results are valid in the intermedia
regime, from smallx up to x'1, and consequently describ
the transition to the strong localization behavior. In this ca
which can be called a weak transverse localization, the ef
is of a stochastic character, but, as always for the localiza
phenomena, is related to the constructive interference
multiply scattered waves.

The mechanism of transverse localization, whether str
or weak, is universal and can play an important role in wa
propagation in many natural and artificial media. As e
amples, we may note the propagation of electromagnetic
waves in the ionosphere or UHF waves in the troposph
layer. The results of recent experiments by Erukhimovet al.
@24#, dealing with oblique chirp sounding of the ionosphe
have revealed the guidance effect of the Pedersen mod
disturbed ionosphere. According to the experimental d
apart from the regular Pedersen mode, a stable ducting m

-

-

(

FIG. 4. Normalized wave correction calculated on the beam a
(r 50) as a function ofl for L52, 4, and 8. The dashed lin
corresponds to the geometric optics regime (L!1).
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at lower frequencies has been observed and the effect
been related to anisotropic irregularities in the vicinity of t
F-layer maximum. Some indirect indications of the existen
of random waveguides in the tropospheric layer are d
cussed in@25#. In particular, there exists a frequently o
served correlation between the magnitude of the signal
beyond the horizon and the variance of turbulent fluctuati
of the refractive index in the ground layer. The signal inte
sity increases with turbulent fluctuations, rather than decre
ing as for the regular refractive waveguide. The effect
transverse localization can also play a significant role
sound propagation in the ocean, where the fluctuations of
refractive index are caused mainly by the internal waves
are usually stretched in the horizontal direction. Howev
for the correct comparison of the theoretical results with
experimental data we have to account for the fractal
anisotropic character of the random structure in the tra
verse plane and we intend to present the results of appro
ate calculations elsewhere.

ACKNOWLEDGMENT

This research was supported by the Israel Science F
dation of the Israeli Academy of Sciences and Humanitie

APPENDIX

Using the representation~2.9! and introducing the sum
and difference vectors

p~z!5 1
2 @q1~z!1q2~z!#, q~z!5q1~z!2q2~z!,

we arrive at the expression for the normalized second-o
coherence function

g2~r2I,r02I;L !

5 R Dp~z! R Dq~z!

3expF2
k2

4 E
0

L

dz1E
0

L

dz2F2„z1 ,z2 ;p~z!,q~z!…G ,
~A1!

where the scattering functionF2„z1 ,z2 ;p(z),q(z)… is given
by

F2„z1 ,z2 ;p~z!,q~z!…

5D«„r1~z1!2r2~z2!,z12z2…

2
1

2 (
j 51

2

D«„r j~z1!2r j~z2!,z12z2…. ~A2!

In this formula

D«~r12r2 ;z12z2!5^@ «̃~r1 ,z1!2 «̃~r2 ,z2!#2& ~A3!

is the structure function, which is introduced to descri
among others, the fractal media, in particular, turbulent sp
tra, for which the correlation function
as

e
-

ar
s
-
s-
f
n
he
at
r,
e
d
s-
ri-

n-
.

er

,
c-

B«~r12r2 ;z12z2!5^«̃~r1 ,z1!«̃~r2 ,z2!& ~A4!

diverges at zero. For regular statistically homogeneous
dia the relation between the correlation and structure fu
tions has the form

D«~r ;z!52@B«~0;0!2B«~r ;z!#. ~A5!

Finally, the vectorsr j (z) in Eq. ~A2! are given by

r j~z!5 r̄ j~z!1@p~z!1~21! j 21q~z!/2#, j 51,2.
~A6!

The leading term of the coherence function is defined
setting p(z)50 and q(z)50, which corresponds to the
straight-line approximation

ḡ2~r2I,r02I;L !5expF2
k2

4 E
0

L

dz1E
0

L

dz2F2~z1 ,z2 ;0,0!G .
~A7!

In order to calculate the correction we present the cohere
function as

g2~r2I,r02I;L !5ḡ2~r2I,r02I;L ! R Dp~z! R Dq~z!

3expFk2

4 E
0

L

dz1E
0

L

dz2

3F̃2„z1 ,z2 ;p~z!,q~z!…G , ~A8!

where

F̃2„z1 ,z2 ;p~z!,q~z!…

5F2~z1 ,z2 ;0,0!2F2„z1 ,z2 ;p~z!,q~z!….

~A9!

Assuming now the smallness of the argument of the ex
nential in Eq.~A8!, we expand the coherence function in
series

g2~r2I,r02I;L !5ḡ2~r2I,r02I;L !$11x1¯%, ~A10!

where the first correctionx is given by

x5
k2

4 E
0

L

dz1E
0

L

dz2 R Dp~z! R Dq~z!

3F̃2„z1 ,z2 ;p~z!,q~z!…. ~A11!

To obtain a soluble quadratic Lagrangian in the path integ
we introduce the two-dimensional spectral densityF«(s,z) of
the random structure in the transverse plane

D«~r ,z!52E d2s@12exp~ i r•s!#F«~s,z!. ~A12!

Then, performing integration in Eq.~A11!, we obtain for the
wave correctionx the final result, Eq.~3.3!.
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